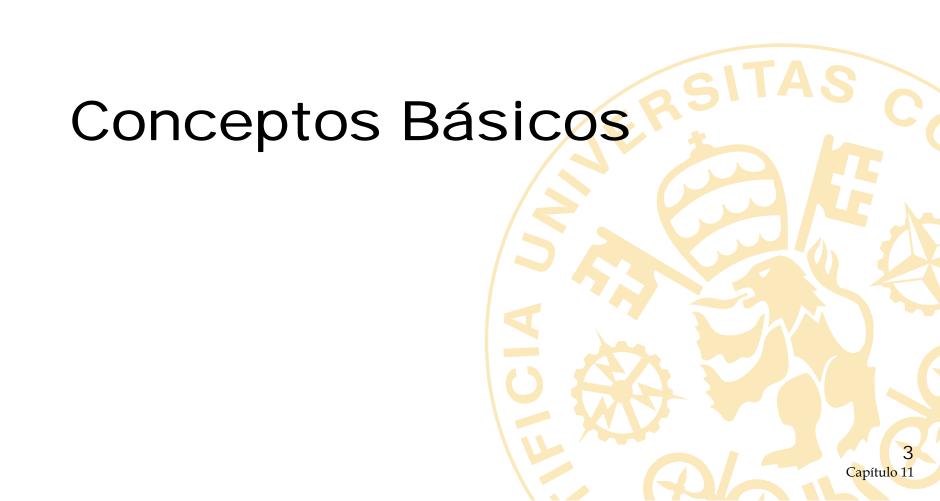


Seguridad Informática

Capítulo 04: Criptografía simétrica


Titulación: Ingeniero en Informática. Curso 5º - Cuatrimestral (2007-2008)

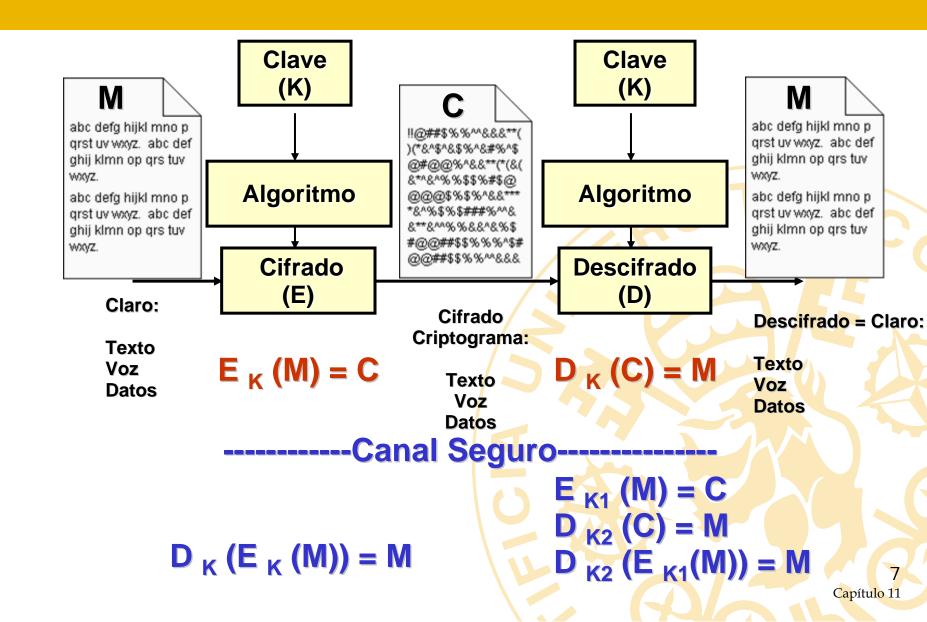
Javier Jarauta Sánchez Rafael Palacios Hielscher José María Sierra

Tema 04: Criptografía simétrica

- ➤ Introducción y conceptos básicos
- ➤ Historia de la criptografía
- > Criptosistemas
- ➤ Algoritmos y claves
- Criptografía de clave secreta (simétrica)
- ➤ Tipos de cifrado: Bloque y flujo
- ➤ Algoritmos simétricos: DES, 3DES, IDEA, AES, CAST, BLOWFISH, RC2, RC5, RC4
- ➤ Aplicaciones: SSL, IPSec
- Situación actual y futuro de la criptografía

Modelo ISO 7498/2 Riesgos-Servicios-Mecanismos

¿Quién tiene acceso a?	Tarjeta de identidad	Control de acceso
¿Cómo puedo garantizar que soy quien digo ser?	Fotos en carnets identidad	Autenticación
¿Cómo se garantiza que solo aquellos a los que se ha autorizado tienen acceso a la información?	Entrega en mano. Firma del destinatario a la recepción	Confidencialidad
¿Cómo puedo saber que la información no ha sido manipulada?	Sobres y paquetes sellados	Integridad
¿Cómo me aseguro que las partes que intervienen en una transacción no nieguen haberlo hecho?	Testigos, notarios, correos certificados	No repudio


Introducción y conceptos básicos

- ISO 7498/2: Riesgos-Servicios-Mecanismos
- Estados y vulnerabilidad de la información:
 - Mientras se Procesa, Transmite, Almacena
- Criptología: Criptografía y Criptoanálisis
 - El arte y ciencia de mantener mensajes seguros
 - El arte y ciencia de romper mensajes seguros
- Criptosistema
 - Conjunto de dispositivos de cifrado y descifrado, acompañado de un protocolo de transmisión de claves
- Algoritmos criptográficos
 - La función matemática del proceso de cifrado y descifrado, junto con la interrelación con las claves
- Claves
 - Parámetros que inicializan y personalizan los algoritmos

Definiciones

- Servicios de seguridad básicos:
 - Autenticación: Asegurar que el origen de la información es quien dice ser
 - Confidencialidad: Impedir que la información sea vista por quien no debe
 - Integridad: Asegurar que la información no se modifica cuando se transmite o almacena
 - No repudio: Impedir que alguien niegue haber realizado una transacción cuando efectivamente lo ha hecho

Criptosistema o Sistema Criptográfico

Criptoanálisis: Tipos de ataques

Punto de partida: Se conoce el Algoritmo

Principal objetivo: Obtener la Clave

TIPOS DE ATAQUES

- 1.Por texto cifrado
- 2. Por texto claro conocido
- 3. Por texto claro seleccionado
- 4. Por texto claro seleccionado adaptativo

Si el algoritmo es fuerte! ATAQUE POR FUERZA BRUTA i

Historia: Criptografía Clásica

Historia - Métodos Clásicos

Ocultación

Ocultar mensajes dentro de otros

Sustitución

- Cada carácter del texto claro se sustituye por otro en el texto cifrado, según reglas precisas que varían según el método
- Para descifrar se vuelve a sustituir
- Cuatro tipos: Monoalfabética, Polialfabética, Homofónica, Poligrámica

Transposición

- Los caracteres no cambian su significado, sino que alteran sus posiciones respectivas del texto en claro, según patrones que difieren según el método.
- P.ej. Poner texto horizontal en vertical
- Requiere mucha memoria.

Historia de la criptografía

- Métodos de ocultación
 - Steganografía: Ocultación de mensajes en otros mensajes (tinta invisible, marcas de agua, sustitución de bits menos significativos en imágenes...)
- Métodos antiguos
 - La escítala lacedemonia: Método espartano de transposición (Siglo V a. de C.)

Escítala lacedemonia

Texto Claro: LA_ESCITALA_FUE_LA_PRIMERA

Algoritmo: 3 filas x 8 columnas

L	E	I	L	F	_	Р	MA
Α	S	Т	A	U		R	E
_	С	A	_	E/	A	I	R _

Texto Cifrado: LEILF_PMAASTAULRE__CA_EAIR_

- Sustitución monoalfabética
 - Siglo I a. de C. Cifrado de Cesar
- Sustitución homofónica
 - 1401. Duque de Mantua
- Sustitución polialfabética
 - 1568. Inventado por León Battista
 - 1586. Cifrado de Vignère
- Sustitución poligráfica: Cifra varias letras juntas
 - 1854 Playfair cipher (I Guerra Mundial)

Cifrado de Cesar

Texto Claro	V		N		V	I	D	I	V		N	C	I	C	A	Ε	S	A	R	D		X	I	T
Clave	D	D	D	D	D	D	D	D	D	D	D	D	D	D	D	D	D	D	D	D	D	D	D	D
Tx Cifrado	Y	L	P	L	Y	L	G	L	Υ	L	P	F	L	F	D	Н	V	D	Þ	G) <u> </u>	Α	L	W

Método: Sustitución biunívoca de una letra

Algoritmo: Desplazar el alfabeto n posiciones (n=3)

Clave: D

Variante: Utilizar diferentes claves (n= 5, 20,...)

Variante: Utilizar permutaciones (26! =4.03 10²⁶)

Sustitución homofónica

Método: Sustitución simple, pero un carácter claro

puede dar lugar a varios cifrados

Algoritmo: A podría corresponder a D, G o Q

Clave: n = 3, 6, 17

14 Capítulo 11

Sustitución Polialfabética - Cifrado de Vignère

Texto Claro	P	A	R		S	В	I	E	N	٧	A	L	Ε	U	N	A	M	I	S	A
Clave	F	R	A	N	С		A	F	R	A	N	С		A	F	R	A	N	C	I
Tx Cifrado	U	R	R	U	U	J	I	J	Е	٧	Z	Z	M	U	R	R	M	U	U	T

Método: Múltiples sustituciones simples

Algoritmo: Cada letra se sustituye por otra según la clave

Clave: FRANCIA

Periódicos Longitud L= Nº de letras de la clave (7)

Seguridad: Mas cuanto mayor es la clave

Sustitución poligráfica

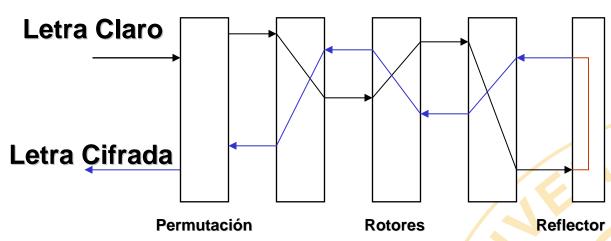
Método: Cifra varias letras juntas, normalmente 2

Algoritmo: Matriz de 5 x 5 sin repetir letras

Clave: palabra inicial

Cifrado de Vignère (mod 27)

Texto Claro


_																												
		1	2	3	4	5	6	7	8	9	0	1	2	3	4	5	6	7	8	9	0	1	2	3	4	5	6	7
	1	Α	В	С	D	E	F	G	Н	I	J	K	L	М	Ν	Ñ	0	Р	Q	R	S	Т	U	V	W	Х	Υ	Z
ſ	2	В	С	D	Е	F	G	Н	Ι	J	K	L	М	N	Ñ	0	Р	Q	R	S	Т	U	V	W	Х	Υ	Z	Α
	З	С	D	Е	F	G	Н	Ι	J	K	L	М	Ν	Ñ	0	Р	Q	R	S	Т	U	٧	W	Х	Υ	Z	Α	В
	4	D	Ε	F	G	Н	I	J	K	L	М	N	Ñ	0	Р	Q	R	S	Т	U	V	W	Х	Υ	Z	Α	В	С
	5	Е	F	G	Н	I	J	K	L	М	N	Ñ	0	Р	Q	R	S	Т	U	V	W	Χ	Υ	Z	Α	В	O	D
	9	F	G	Н	_	J	K	L	М	Ν	Ñ	0	Р	Q	R	S	Т	U	V	W	X	Υ	Z	Α	В	С	D	E
	7	G	Н	I	J	K	L	М	N	Ñ	0	Р	Q	R	S	Т	U	V	W	Х	Υ	Z	Α	В	С	D	E	F
	8	Ι	I	J	K	L	М	N	Ñ	0	Р	Q	R	S	Т	U	V	W	Х	Υ	Z	Α	В	С	D	Е	F	G
	9	_	J	K	L	М	N	Ñ	0	Р	Q	R	S	Т	U	V	W	Χ	Υ	Z	Α	В	C	D	Е	F	G	I (
	0	7	K	L	М	N	Ñ	0	Р	Q	R	S	Т	כ	V	W	Х	Υ	Z	Α	В	С	D	E	F	G	Η	
	1	K	L	М	N	Ñ	0	Р	Q	R	S	Т	U	>	W	Х	Υ	Z	Α	В	O	D	E	F	G	Ι	_	J
	2	L	М	N	Ñ	0	Р	Q	R	S	Т	U	V	V	Х	Υ	Z	Α	В	С	ם	ш	F	G	Н	Т	7	K
	S	М	N	Ñ	0	Р	Q	R	S	Т	U	V	W	Х	Υ	Z	A	В	С	D	Е	F	G	Н		J	K	٦
•	4	N	Ñ	0	Р	Q	R	S	Т	U	V	W	Х	Υ	Z	Α	В	С	D	Е	F	G	Н	_	J	K	L	M
	5	Ñ	0	Р	Q	R	S	Т	U	V	W	Х	Υ	Z	Α	В	С	D	E	F	G	Н		J	K	4	M	N
	6	0	Р	Q	R	S	Т	U	V	W	Х	Υ	Z	Α	В	C	D	E	F	G	Н	7	7	K	L	М	N	Ñ
	7	Р	Q	R	S	Т	U	V	W	Χ	Υ	Ζ	Α	В	С	D	E	F	G	Ξ	7	7	K	L	М	N	Ż	0
	8	Ø	R	S	Т	U	V	W	Х	Υ	Z	Α	В	O	D	E	F	G	Н		7	K	<u> </u>	M	N	Ñ	0	Р
	9	R	S	Т	U	V	W	Х	Υ	Z	Α	В	С	D	Е	F	G	Н	ı	J	K	L	M	N	Ñ	0	Ĺ	Q
L	0	S	Т	U	V	W	Х	Υ	Z	Α	В	С	D	Е	F	G	Н	I	J	K	∟	М	N	Ñ	0	Р	Q	R
L	1	Т	U	V	W	Х	Υ	Z	Α	В	С	D	Е	F	G	Н		J	K	L	M	N	Ñ	0	Р	Q	R	S
	2	כ	V	W	Х	Υ	Z	Α	В	O	D	Е	F	G	Η	I	J	K	L	М	2	Ž	0	Р	Q	R	Ó	T
	3	>	W	Х	Υ	Z	Α	В	С	ם	Е	F	G	I	I	J	K	L	М	Z	Z	0	Р	Q	R	S	H	U
	4	W	Х	Υ	Z	Α	В	С	D	Е	F	G	Н	I	J	K	L	М	N	Ñ	0	Р	Q	R	S	Т	U	V
	5	Х	Υ	Z	Α	В	С	D	Е	F	G	Н	Ι	J	K	L	М	Ν	Ñ	0	Р	Q	R	S	Т	U	V	W
	6	Υ	Z	Α	В	С	D	Е	F	G	Н	-	J	K	L	М	N	Ñ	0	Р	Q	R	S	Т	U	٧	W	X
Ī	7	Z	Α	В	С	D	Е	F	G	Н	I	J	K	L	М	N	Ñ	0	Р	Q	R	S	T	U	V	W	X	Υ

Clave

16 Capítulo 11

- One-Time Pad: Incondicianalmente seguro
 - 1917. Cifrado de Vernam
 - Es Vignère con longitud clave k=longitud mensaje m)
- Transposición: (confusión y difusión)
 - 1949 Shannon demostró el secreto perfecto
- La máquina Hagelin (USA)
 - 6 rotores de 26, 25, 23, 21, 19 y 17 pins
 - Vignère de periodo 101.405.850
- La máquina Enigma. (Alemania-Japón)
 - 1923. Scherbius. Electromecánica
 - 3 rotores y un reflector

Enigma

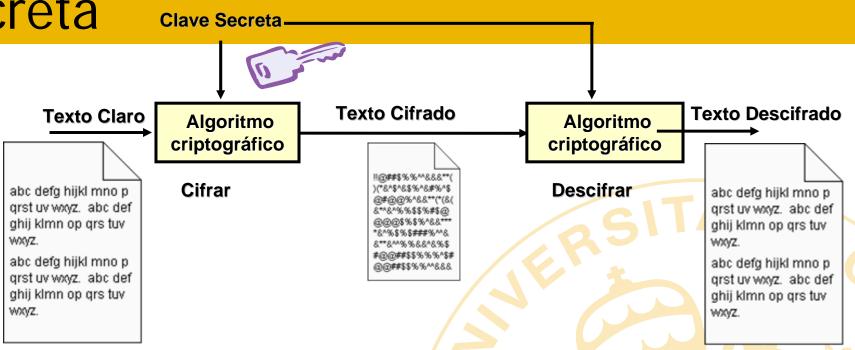
Utilizada por Alemanes en II Guerra Mundial

Clave: - Configuración de rotores

- Posición inicial de rotores
- Permutación inicial

Descifrada por Polacos

Historia: Criptografía Moderna


Historia de la criptografía

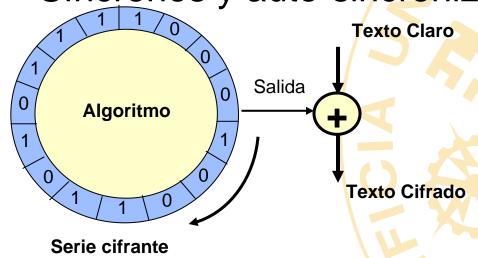
- Data Encryption Standard (DES)
 - 1970. NBS
 - 1974. Lucifer IBM (clave de128 bits)
 - 1975. DEA IBM (Clave de 56 bits)
 - 1976. DES Estandar NIST para EEUU
- International Data Encryption Alg (IDEA)
 - 1991. Eurocrypt. Lai, Massey y Murphy
- Advanced Encryption Standard (AES)
 - Oct 2000. Rijndael seleccionado por NIST

Tipos de algoritmos criptográficos

- Simétricos. Clave Secreta
 - Utiliza la misma clave para cifrar y descifrar
 - La seguridad está en la clave no en el algoritmo
 - Las claves hay que distribuirlas en secreto
 - Si una clave está comprometida, puede descifrarse todo el tráfico con la misma
 - Aumento del número de claves: n(n-1)/2 para n usuarios
 - Permiten altas velocidades de cifrado
 - Tipos de Algoritmos
 - Flujo (o serie): operaciones con OR-Exclusive
 - Bloque: Modos ECB, CBC

Algoritmos Simétricos o de Clave Secreta

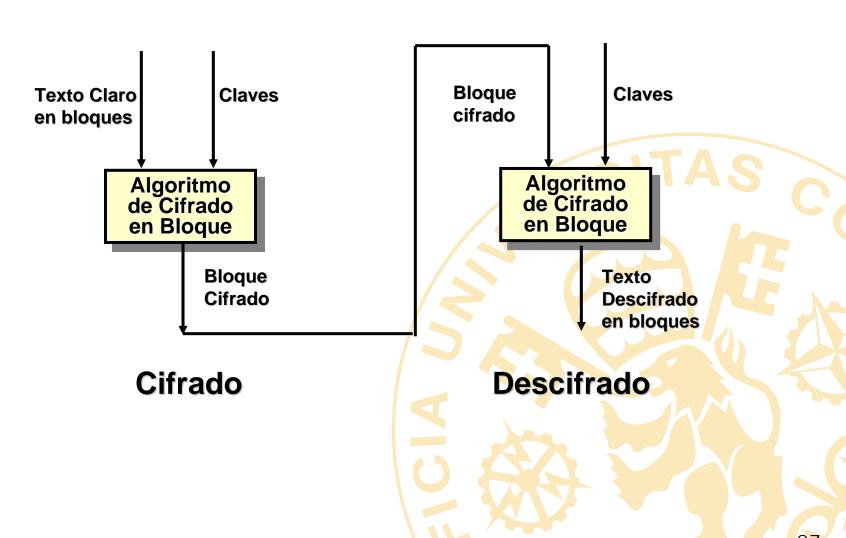
- Utiliza La misma clave para cifrar y descifrar
- La segurida se basa en mantener secreta la clave, no el algoritmo.
- Se necesita compartir las claves entre transmisor-receptor.
- Fortaleza: Velocidad de cifrado
- Debilidades: Gestión de claves
- Tipos: Algoritmos de serie y de bloque
- Ejemplos: DES, 3DES, RC4, CAST, IDEA, AES.


Criptografía de Clave Secreta (Simétrica)

Criptografía de clave secreta

- Tipos de algoritmos simétricos
 - De serie cifrante (flujo)
 - De bloque
- Tipo de sincronización
 - Auto sincronizable
- ¿Es mejor dar a conocer el algoritmo o mantenerlo secreto?
 - Entornos militares y estratégicos: secreto
 - Ej. OTAN. Ej. A5 de GSM
 - Entornos civiles: conocido
 - Ej. DES. Ej. AES

Algoritmos de serie cifrante

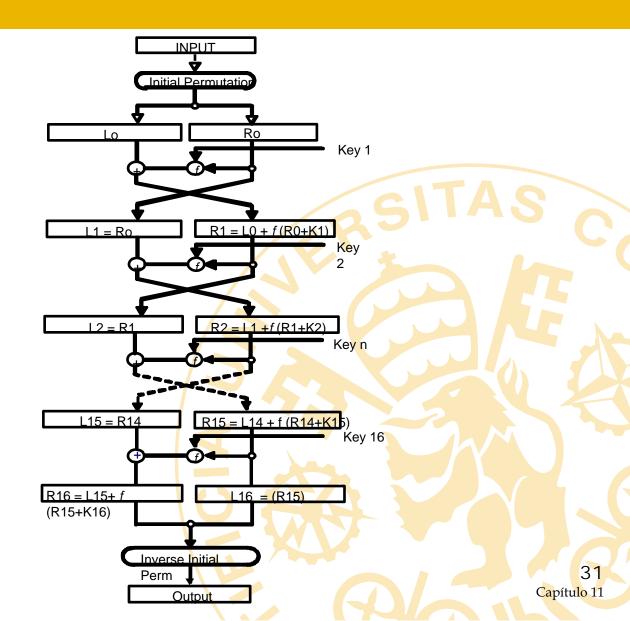

- El texto claro se digitaliza y cada bit se cifra mediante una OR Exclusive con un bit de la serie cifrante
- La serie cifrante ha de ser muy larga, pseudoaleatoria y no lineal
- Tipos de cifradores de flujo
 - Síncronos y auto-sincronizables

Algoritmos de cifrado en Bloque

- El algoritmo de cifrado transforma x bits del texto claro en x bits del texto cifrado.
- Cada bit del texto claro tiene efecto en cada bit del texto cifrado.
- Cada bloque es independiente, no hay influencia entre bloques.
- Bloques de texto claro idénticos, producen bloques de texto cifrado idénticos.
- Un error en el texto cifrado influye solo en su bloque
- Tipos de Algoritmos de Bloque
 - DES Electronic Code Book (ECB)
 - DES Cipher Block Chaining (CBC)

Cifrado en bloque

El algoritmo DES y 3DES


- Está basado en Lucifer de IBM (1975)
- Se aprueba como estándar en 1977 por NIST, ANSI 3.92 (DEA),
- Utiliza claves de 56 bits y 8 de paridad (64 bits)
- Utiliza técnicas básicas de:
 - Transposición, le confiere propiedades de difusión
 - Sustitución, le confiere propiedades de confusión
 - Operaciones lógicas bolenas (Or-exclusivo)
- Es un algoritmo de cifrado en bloques de 64 bits
- Realiza 16 iteraciones para cifrar un bit
- En cada iteración utiliza 48 bits de los 64 de la clave
- Se utiliza en diferentes modos: ECB, CBC
- Mediante los modos CFB y OFB se cifra en serie
- Existía un modo con clave de 40 bits (muy débil), el único exportable de EEUU hasta el año 2000
- La Electronic Frontier Foundation (www.eff.org) construyó un craqueador que lo rompe en 3 días

Algoritmo DES

- Realiza una permutación inicial del bloque según una función derivada de la clave.
- Realiza un conjunto de sustituciones usando 8 S-boxes (matrices de 4 x 16) seguidas de una permutación.
- Divide el bloque de 64-bit permutado en dos partes de 32-bit y expande los 32 bits a 48 bits.
- Cifra la parte derecha con 48 de los 56 bits originales de la clave.
- Repite 16 veces el conjunto completo de funciones, con una clave de cifrado diferente cada vez.
- Realiza una permutación final, que es la inversa de la permutación realizada inicialmente.

- 1. Permutación inicial
- 2. Transformación de la clave
- 3. Permutación de expansión
- 4. Descripción de la iteración
- 5. Sustitución en la S-Box
- 6. Permutación en la P-Box
- 7. Permutación Final
- 8. Potencia del DES

DES: Diagrama del proceso

Otros algoritmos simétricos

RC2:

- Diseñado por Ron Rivest para RSA y no ha sido publicado
- Cifrado de bloque de 64 bits con claves de longitud variable
- Tres veces más rápido que DES

• RC4:

- Diseñado en 1987 por Ron Rivest para RSA
- En septiembre de 1994 alguien puso el código en Internet
- Cifrado en serie con claves de longitud variable
- Diez veces más rápido que DES

RC5:

- Diseñado por Ron Rivest y analizado por RSA Labs.
- Cifrado de bloque con claves de 40 a 2040 (típico 128)
- Variable en número de iteraciones, recomendadas 12

Otros algoritmos simétricos

CAST:

- Diseñado en Canadá por C. Adams y S. Tavares (Entrust)
- Utiliza claves de 40 a 128 bits (típico 128)
- Cifrado de bloque, utiliza 6 S-boxes, muy rápido

BLOWFISH:

- Diseñado por Bruce Schneier
- Claves de 40 a 448 (típico 128)
- Es muy sencillo (5k) y optimizado para software actual

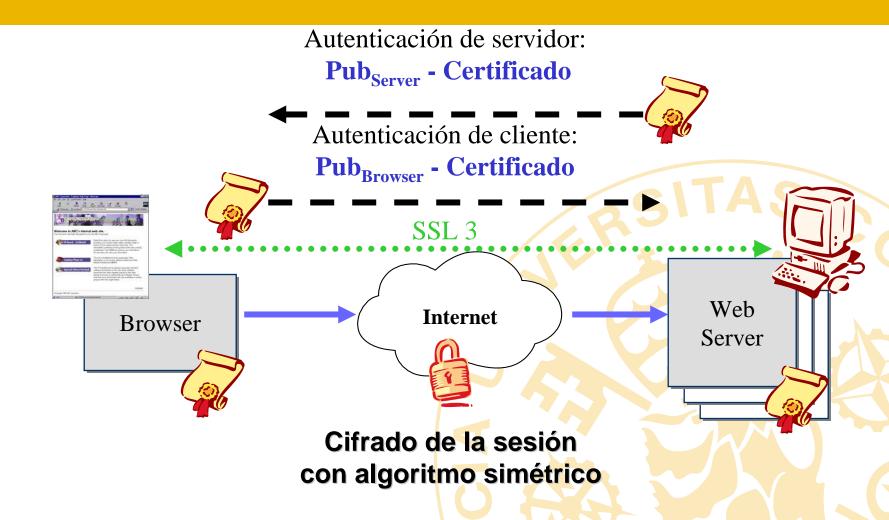
IDEA:

- Diseñado por James Massey
- Claves de 128 bits. Es dos veces más rápido que el DES.
- Patentado por Ascom-Tech AG.
- Muy utilizado en Europa

Otros algoritmos simétricos

AES:

- En Enero 1997 NIST solicitó algoritmos para sustituir al DES
- En Agosto 1998 se pre-seleccionaron 15 algoritmos
- En Abril de 1999 se seleccionaron 5 finalistas: MARS, RC6, Rijndael, Serpent y Twofish
- En Octubre de 2000 se seleccionó Rijndael como AES FIPS 197
- Diseñado en Bélgica por Joan Daemen y Vincent Rijmen (Univ Leuven)
- Algoritmo de cifrado en bloques de 128 bits
- Puede utilizar diferentes tamaños de clave. 128, 192 y 256
- Se aceptan implantaciones en software, firmware, hardware o mixtas
- Para información sensible "no clasificada"


Aplicaciones reales 35 Capítulo 11

Aplicación: SSL

- SSL Secure Sockets Layer. Estandar de facto para los navegadores
- Actualmente conocido también como TLS Transport Layer Security
- El navegador cliente inicia una sesión https:
- El Web Server envía al navegador su certificado y solicita (si procede) el certificado del cliente
- Se utiliza un algoritmo simétrico para el cifrado de datos una vez establecido el tunel seguro

SSL - Secure Sockets Layer

El futuro de la criptografía

Situación actual y futuro

- Amplia utilización en Internet e Intranet: SSL
- Redes Privadas Virtuales (VPN): IPSec
- Combinación de criptografía simétrica y asimétrica en comunicaciones
- Cifrado de datos en discos duros de PC, tarjetas de PDA, memorias USB...
- Nuevos algoritmos basados en criptografía cuántica